Extensions 1→N→G→Q→1 with N=C22 and Q=C3xD4

Direct product G=NxQ with N=C22 and Q=C3xD4
dρLabelID
D4xC2xC648D4xC2xC696,221

Semidirect products G=N:Q with N=C22 and Q=C3xD4
extensionφ:Q→Aut NdρLabelID
C22:(C3xD4) = D4xA4φ: C3xD4/D4C3 ⊆ Aut C22126+C2^2:(C3xD4)96,197
C22:2(C3xD4) = C3xC4:D4φ: C3xD4/C12C2 ⊆ Aut C2248C2^2:2(C3xD4)96,168
C22:3(C3xD4) = C3xC22wrC2φ: C3xD4/C2xC6C2 ⊆ Aut C2224C2^2:3(C3xD4)96,167

Non-split extensions G=N.Q with N=C22 and Q=C3xD4
extensionφ:Q→Aut NdρLabelID
C22.1(C3xD4) = C3xC4oD8φ: C3xD4/C12C2 ⊆ Aut C22482C2^2.1(C3xD4)96,182
C22.2(C3xD4) = C3xC23:C4φ: C3xD4/C2xC6C2 ⊆ Aut C22244C2^2.2(C3xD4)96,49
C22.3(C3xD4) = C3xC4wrC2φ: C3xD4/C2xC6C2 ⊆ Aut C22242C2^2.3(C3xD4)96,54
C22.4(C3xD4) = C3xC22.D4φ: C3xD4/C2xC6C2 ⊆ Aut C2248C2^2.4(C3xD4)96,170
C22.5(C3xD4) = C3xC8:C22φ: C3xD4/C2xC6C2 ⊆ Aut C22244C2^2.5(C3xD4)96,183
C22.6(C3xD4) = C3xC8.C22φ: C3xD4/C2xC6C2 ⊆ Aut C22484C2^2.6(C3xD4)96,184
C22.7(C3xD4) = C3xC2.C42central extension (φ=1)96C2^2.7(C3xD4)96,45
C22.8(C3xD4) = C3xD4:C4central extension (φ=1)48C2^2.8(C3xD4)96,52
C22.9(C3xD4) = C3xQ8:C4central extension (φ=1)96C2^2.9(C3xD4)96,53
C22.10(C3xD4) = C3xC4.Q8central extension (φ=1)96C2^2.10(C3xD4)96,56
C22.11(C3xD4) = C3xC2.D8central extension (φ=1)96C2^2.11(C3xD4)96,57
C22.12(C3xD4) = C6xC22:C4central extension (φ=1)48C2^2.12(C3xD4)96,162
C22.13(C3xD4) = C6xC4:C4central extension (φ=1)96C2^2.13(C3xD4)96,163
C22.14(C3xD4) = C6xD8central extension (φ=1)48C2^2.14(C3xD4)96,179
C22.15(C3xD4) = C6xSD16central extension (φ=1)48C2^2.15(C3xD4)96,180
C22.16(C3xD4) = C6xQ16central extension (φ=1)96C2^2.16(C3xD4)96,181

׿
x
:
Z
F
o
wr
Q
<